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Conformational control of selectivity
in the dienone–phenol rearrangement
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Abstract—We have explored the dienone–phenol rearrangement of substrates where: only the p-cresol pathway is possible and rel-
ative migratory aptitudes should play no role in determining the regiochemistry of the reaction. For these substrates the selectivity of
the rearrangement was found to depend on the stereochemistry of the spirocyclic intermediate formed during the course of the rear-
rangement. Rearrangement of one of these substrates gave—surprisingly—a single regioisomeric product. Selectivity in this case can
be correlated with the relative stability of cationic intermediates, which lie on the pathway between spirocycle and final product.
� 2007 Elsevier Ltd. All rights reserved.
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Scheme 1. Naphthalenic DPR.
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Dienone–phenol rearrangement (DPR) reactions, in
which naphthalenic dienones of type 1 undergo isomer-
ization to phenolic products upon treatment with acidic
media, have been extensively studied.1 A mixture of two
phenols is generally obtained, which result from two
separate pathways: 1,2-migration of the saturated ring
(C5) produces a spirocyclic intermediate 2, which leads
to 3 (p-cresol pathway); 1,2-migration of the bridgehead
substituent (R1) and subsequent deprotonation of inter-
mediate 5 leads to 6 (m-cresol pathway). Competition
between the two pathways has been shown to be influ-
enced primarily by the relative migratory aptitudes of
R1 and C5 but also by the media in which the reaction
is run.2 There are a number of cases where either p-cre-
sol 3 or m-cresol 6 may be formed with high selectivity.
Formation of the alternative the p-cresol product 4 is
never a major pathway due to the lower migratory apti-
tude of the primary carbon (C8) compared to the sec-
ondary carbon (C5).

In conjunction with other studies involving the prepara-
tion and biological testing of eremophilane-type sesqui-
terpenes and simple derivatives, we had an occasion to
examine the dienone–phenol rearrangement of the noot-
katone-derived dienone 10 (Scheme 2). The unexpected
selectivity of this reaction prompted us to examine the
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Scheme 2. Preparation of dienone substrates.
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Scheme 4. Substrates 11 and 12 rearrange via a common spirocyclic
intermediate.

A. M. Sauer et al. / Tetrahedron Letters 48 (2007) 6590–6593 6591
dienone–phenol rearrangements of isomeric compounds
11 and 12 (Scheme 2). Herein we report the results of
these studies, which reveal hitherto unexplored confor-
mational factors influencing the regiochemical course
of the reaction.

Compound 10 was prepared by dehydrohalogenation of
dibromide 7, which we described previously.3 Com-
pounds 11 and 12 were prepared from known Robinson
annulation products 84 and 95 (Scheme 2).

Compounds 10–12 differ from typical naphthalenic
dienone–phenol substrates (Scheme 1) in two important
respects. Due to the presence of a methyl group at C4

(blocking deprotonation in the m-cresol pathway) only
the p-cresol pathway is possible. Due to the lack of sub-
stitution on C5 and C8, the competing p-cresol pathways
equally favorable in terms of migratory aptitude.

Treatment of 10 with acetic anhydride containing a drop
of sulfuric acid produced, instead of the expected mix-
ture of regioisomers 14 and 15, a single phenol acetate
product. The identity of this product, established by sin-
gle crystal X-ray analysis, was shown to be 14 (Fig. 1). It
appears that the isopropyl group at C6 has a marked
influence on the relative rate of C5 versus C8 migration
in the spirocyclic intermediate 13 with preferential C8

migration leading to the observed product (Scheme 3).
Figure 1. Crystal structure of 14.
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Scheme 3. DPR of 10.
Dienone–phenol rearrangements of isomeric structures
11 and 12 were expected to favor the same product since
they should proceed via a common spirocyclic interme-
diate 16 (Scheme 4). Since this spirocyclic intermediate is
diastereomeric to 13, formed in the rearrangement of 10,
we anticipated that these reactions would show a differ-
ent product distribution.

Dienone–phenol rearrangements of substrates 11 and
12, in contrast to the corresponding reaction of 10, were
found to be unselective (Scheme 5). Treatment of 11 or
12 with acetic anhydride containing a drop of sulfuric
acid produced a 1:1 mixture of phenol acetates 14 and
15.

Selectivity of the dienone–phenol rearrangements pro-
ceeding through the diastereomeric intermediates 13
and 16 roughly correlates with the relative stability of
the cationic intermediates formed by competing C5 ver-
sus C8 migration (Scheme 6). The preferential formation
of phenol acetate 14 from dienone 10 correlates with the
greater stability of cationic intermediate 18 (converted
to 14 by loss of a proton) from the spirocyclic interme-
diate 13. Cation 18 possesses an equatorial isopropyl
group whereas the competing intermediate 17 suffers
from a pair of 1,3-diaxial interactions involving the
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Scheme 5. DPR of 11 and 12.
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isopropyl group. Based on this type of correlation, we
expected rearrangement of dienones 11 and 12 to favor
phenol acetate 15 since the cationic intermediate leading
to this product (20) bears an equatorial isopropyl group
while the competing pathway leading to 14 proceeds
through an intermediate (19) bearing an axial isopropyl
group. However, the rearrangements of 11 and 12
should be less selective than that of 10 since the less sta-
ble intermediate (19) suffers from only a single 1,3-diax-
ial interaction instead of a pair of such interactions.

Discussion of DPR regiochemistry has focused on other
factors such as differences in migratory aptitude or steric
interactions resulting from substituents at C5 or C8. The
correlation between the regiochemistry of the dienone–
phenol rearrangement and the stereochemistry of the
spirocyclic intermediate (e.g., 13 vs 16 as demonstrated
above) has not previously been recognized. We suspect
that stereochemistry, and concomitant conformational
issues, may play an unrecognized role in determining
the course of these reactions. In accordance with this
suspicion, we note that in 1960 Hirakura reported that
under anhydrous conditions, the dienone–phenol rear-
rangement of trans-dienoneacetic acid 21 provided the
p-type cresol 23, exclusively (Scheme 7).6

Through the examination of the stability of cationic inter-
mediate 25, one can see that this system suffers from a pair
of destabilizing 1,3-diaxial interactions, like that of previ-
ous intermediate 17. The alternative pathway, proceeding
via reaction intermediate 26, orients the carboxymethyl
substituent in the more stable, equatorial position, there-
by providing a favorable route to the exclusive produc-
tion of the phenolic acetate 23 (Scheme 8).

Steric issues such as those described in Schemes 6 and 8
seem to play an important role in determining DPR
selectivity for systems described above. That other struc-
tural factors may compete, or override, conformation
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Scheme 8. Correlation between selectivity and stability.
issues is illustrated by the selectivity of steroidal dienone
phenol rearrangements such as that of the steroidal die-
none 27 depicted in Scheme 9 where 29 is the exclusive p-
cresol product.7 In the steroidal dienone–phenol rear-
rangement migratory aptitude plays the dominant role
in determining product regiochemistry, overriding steric
factors, which would appear to be more favorable in the
disfavored pathway leading to the unobserved product
30.

In conclusion, we have explored the dienone–phenol
rearrangement of substrates where: only the p-cresol
pathway was possible and relative migratory aptitudes
should play no role in determining the regiochemistry
of the reaction. For these substrates the selectivity of
the rearrangement was found to correlate with the ste-
reochemistry of the spirocyclic intermediate formed dur-
ing the course of the rearrangement. Rearrangements
employing substrates 11 and 12, proceeding via spiro-
cycle 16, gave a 1:1 mixture of the two possible p-cresol
products. In contrast, rearrangement of 10, proceeding
via the diastereomeric spirocycle 13, gave—surpris-
ingly—a single product 14. It is tempting to attribute
the selectivity of these rearrangements to the relative sta-
bility of cationic intermediates 17–20, which lie on the
pathway between spirocycle and final product. How-
ever, this correlation is obviously not perfect (otherwise
substrates 11 and 12 would show some selectivity for
product 15) and more subtle issues may be at play here.
Nevertheless, it seems that stereochemistry may play a
more important role in determining the course of die-
none–phenol rearrangement than previously recognized.
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